“These are organized embryo-like structures modeled on the human embryo, but in my opinion I don’t consider them to be the equivalent of a human blastocyst that comes from an in vitro fertilization clinic,” said Amander Clark, a member of Polo’s team and chair of molecular, cell and developmental biology at University of California, Los Angeles.
Polo’s team created their blastoids by reprogramming human skin cells, changing their cellular identity to form a set of mixed cells similar to those found inside an early human embryo.
They put the cells together in a 3-D “jelly” scaffold, and found that the cells began to interact and organize themselves into a round structure similar to a human blastocyst. They call their discovery induced blastoids, or iBlastoids.
Wu’s team went about it differently, using stem cells derived from adults to generate blastocyst-like structures.
Both reports were published March 17 in the journalNature.
The two studies “provide an exciting advance,” said Peter Rugg-Gunn, a group leader of genetic research at the Babraham Institute in the United Kingdom.
“The work underscores the remarkable ability of cells to self-organize into complex structures,” Rugg-Gunn said. “Impressively, even in these first experiments, defined sub-structures are formed that appear to mimic landmark events in early development, thereby opening up this process to experimental observation and study. The research provides an important new cell model to investigate human early development, which could lead to a better understanding of infertility and early pregnancy loss.”
More information
The University of California, San Francisco has more on the process of conception.
SOURCES: Jose Polo, PhD, professor, biology, Monash University, Melbourne, Australia; Jun Wu, PhD, assistant professor, molecular biology, University of Texas Southwestern Medical Center, Dallas; Amander Clark, PhD, chair, molecular, cell and developmental biology, University of California, Los Angeles; Nature, March 17, 2021