Now it turns out that some B.1.1.7 coronaviruses in Britain also have the E484K mutation.
To search for new mutations, British researchers reviewed the 214,159 genomes of coronaviruses that the United Kingdom has sequenced as of Jan. 26. In its report, Public Health England said that they found 11 samples of the B.1.1.7 variant that also had the E484K mutation.
Since that analysis, more of these viruses have come to light. NextStrain, a website where scientists gather and analyze coronavirus genomes, now identifies 16 B.1.1.7 variants that carry the E484K mutation.
These B.1.1.7 coronaviruses gained the mutation thanks to random copying errors as they multiplied inside of people. The evolutionary tree of the coronaviruses suggests that 15 of the variants descend from one common ancestor that gained the E484K mutation. Meanwhile the sixteenth variant seems to have gained the same mutation on its own.
Commenting on Monday’s report, Kristian Andersen, a virologist at Scripps Research Institute in La Jolla, Calif., said that it was impossible yet to say whether the E484K mutation would make these coronaviruses not only more contagious but more resistant to vaccines. “It’s much too early to speculate whether it will, so we’ll have to wait for data,” he said.
Just because the E484K mutation helps the B.1351 variant, the one initially found in South Africa, evade antibodies doesn’t mean it will do the same in other variants. That’s because mutations don’t have a fixed effect. The impact of a single new mutation to a virus depends on the other mutations that the variant already carries.
Covid-19 Vaccines ›
Answers to Your Vaccine Questions
Currently more than 150 million people — almost half the population — are eligible to be vaccinated. But each state makes the final decision about who goes first. The nation’s 21 million health care workers and three million residents of long-term care facilities were the first to qualify. In mid-January, federal officials urged all states to open up eligibility to everyone 65 and older and to adults of any age with medical conditions that put them at high risk of becoming seriously ill or dying from Covid-19. Adults in the general population are at the back of the line. If federal and state health officials can clear up bottlenecks in vaccine distribution, everyone 16 and older will become eligible as early as this spring or early summer. The vaccine hasn’t been approved in children, although studies are underway. It may be months before a vaccine is available for anyone under the age of 16. Go to your state health website for up-to-date information on vaccination policies in your area
You should not have to pay anything out of pocket to get the vaccine, although you will be asked for insurance information. If you don’t have insurance, you should still be given the vaccine at no charge. Congress passed legislation this spring that bars insurers from applying any cost sharing, such as a co-payment or deductible. It layered on additional protections barring pharmacies, doctors and hospitals from billing patients, including those who are uninsured. Even so, health experts do worry that patients might stumble into loopholes that leave them vulnerable to surprise bills. This could happen to those who are charged a doctor visit fee along with their vaccine, or Americans who have certain types of health coverage that do not fall under the new rules. If you get your vaccine from a doctor’s office or urgent care clinic, talk to them about potential hidden charges. To be sure you won’t get a surprise bill, the best bet is to get your vaccine at a health department vaccination site or a local pharmacy once the shots become more widely available.
That is to be determined. It’s possible that Covid-19 vaccinations will become an annual event, just like the flu shot. Or it may be that the benefits of the vaccine last longer than a year. We have to wait to see how durable the protection from the vaccines is. To determine this, researchers are going to be tracking vaccinated people to look for “breakthrough cases” — those people who get sick with Covid-19 despite vaccination. That is a sign of weakening protection and will give researchers clues about how long the vaccine lasts. They will also be monitoring levels of antibodies and T cells in the blood of vaccinated people to determine whether and when a booster shot might be needed. It’s conceivable that people may need boosters every few months, once a year or only every few years. It’s just a matter of waiting for the data.
But in a report posted online Tuesday, Ravi Gupta, a virologist at the University of Cambridge, and his colleagues reported an experiment they ran to address exactly this question. They combined the E484K mutation with other key mutations found in the B.1.1.7 variant, the one initially found in Britain. The addition of the E484K mutation made it difficult for antibodies to block the viruses. The researchers wrote that they “observed a significant loss of neutralizing activity.”
However, Dr. Gupta and his colleagues used antibodies taken from people who had received just the first of two doses of the Pfizer-BioNTech vaccine. It remains to be seen whether the B.1.1.7 variant with the new mutation, E484K, can evade antibodies after a full vaccination.